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1. Griffiths 5.24 If B is uniform, then it is not a function of position, so any derivative of it vanish. In particular,
∇×B = 0 and ∇·B = 0. One can also check using cartesian coordinates that ∇× r = 0 and ∇· r = 3. Using
these results we find ∇ · A = − 1

2∇ · (r × B) = −1
2 [B · (∇× r)− r · (∇×B)] = 0. Also, using the fact that

(r · ∇)B = 0 since B is uniform, ∇×A = −1
2∇× (r ×B) = − 1

2 [(B · ∇)r− (r · ∇)B+ r(∇·B)−B(∇· r)] =
− 1

2 [(B·)r− 3B]. Now, (B · ∇)r =
(
Bx

∂
∂x +By

∂
∂y +Bz

∂
∂z

)
(x x̂+ y ŷ + z ẑ) = Bx x̂+ By ŷ + Bz ẑ = B. Thus

∇×A = − 1
2 (B− 3B) = B. We can add any constant to bfa without changing the divergence and curl, so the

result is unique up to the addition of a constant vector field.

2. Griffiths 5.25

(a) Let’s assume that A points in the same direction as the current, namely the ẑ direction. Furthermore, the
vector potential should be independent of φ and z because the infinite wire is symmetric with respect to
translations and rotations about the z-axis. So we make the guess that A = A(s) ẑ. Using the formulas for
taking divergence and curl in cylindrical coordinates, we find ∇·A = ∂

∂zA(s) = 0 and ∇×A = − ∂
∂sA(s) φ̂.

Since B = µ0I
2πs φ̂, we must have ∂A

∂s = −µ0I
2πs ⇒ A(s) = −µ0I

2π ln s. For the units to make sense, we need an
arbitrary length in the logarithm, so finally A = −µ0I

2π ln(s/a) ẑ. (Note that putting “a” in the log is the
same as adding a constant, so it doesn’t change the divergence or curl of A.)

(b) First we need to find the magnetic field inside the wire, for s < R. Ampere’s law gives
∮
B · dl =

2πsB(s) = µ0Ienc = µ0I
πs2

πR2 ⇒ B = µ0Is
2πR2 φ̂. We assume that A is of the same form as in part a, so

∂A
∂s = − µ0Is

2πR2 ⇒ A = − µ0I
4πR2 (s2 − b2) ẑ where b is the constant of integration. For s > R the B-field and

thus A look the same as in part (a), except that we need A to be continuous at s = R. We can accomplish

this by taking a = b = R. So finally, A =

{
− µ0I

4πR2 (s2 −R2) ẑ, for s ≤ R;
−µ0I

2π ln(s/R) ẑ, for s ≥ R.
3. Griffiths 5.39

(a) Using the right-hand-rule, positive charges will be deflected down.

(b) Charge accumulates on the bottom and top plates until the electric force balances the magnetic force.
For a single charge, this means qE = qvB ⇒ E = vB. The field between two large, charged plates is
essentially uniform, hence V = Et. So V = vBt. The bottom is at a higher potential, because that is
where the positive charge is.

(c) A current flowing to the right can be considered as positive charges flowing right or negative charges
flowing left. If negative charges flow left, the will also feel a magnetic force downward, and thus negative
charges will build up on the bottom plate. The potential difference between the top and bottom will be
the same, but this time the top plate will be at higher potential.

4. Griffiths 5.41 In cylindrical coordinates B is in the ẑ direction (either into or out of the page) and depends
only on the radial distance s. The particle traveling in the shaded region is assumed to be in the x− y plane
at a location specified by the coordinate r, with tangent vector dl = dr r̂ + rdφ φ̂. If the particle starts from
the origin, it cannot have any angular momentum relative to the origin. If it emerges from the shaded region
on a radial trajectory, its angular momentum is r × p = 0. So if we can show that the particle acquires no
angular momentum throughout its motion, we will have proven that it must emerge on a radial trajectory. We
also know that

∫
B · da = ∫

B2πr dr = 0. Recall that the torque about the origin is N = dL
dt = r× F.

L =
∫
dL
dt
dt =

∫
(r× F) dt =

∫
r× q(v ×B) dt = q

∫
r× (dl×B) = q

[∫
(r ·B) dl−

∫
B(r · dl)

]
,

1



where we have used vdt = dl and the BAC-CAB rule for a triple cross product. Now, since the particle
is in the xy-plane and B is normal to the page, r · B = 0. Also, r · dl = r r̂ · (dr r̂ + rdφ φ̂) = r dr. So
L = − q

2π

∫
B2πr dr = 0 because Bx = By = 0 and

∫
Bz2πr dr = 0 by assumption. Thus the particle emerges

with zero total angular momentum, which means it must be traveling along a radial line.

5. Griffiths 5.56

(a) The angular momentum of a ring is L = Iω ẑ with I =MR2, and its dipole moment will be m = IA ẑ =
Q

2π/ωπR
2 ẑ = 1

2QωR
2 ẑ. Thus m = Q

2ML. So the gyromagnetic ration is g = Q
2M .

(b) Because g is independent of the radius, the same applies to all infinitesimal rings of charge. We could
calculate the total angular momentum of a spinning sphere by adding up the contributions from each ring,
just as we could get the total magnetic moment by adding up the contributions from each ring. Since each
ring will contribute to the magnetic moment and angular momentum in the same proportion, the ratio of
total dipole moment to angular momentum will be the same as in part (a), g = Q

2M .

(c) If the electron has angular momentum 1
2 h̄ then the dipole moment m will be

m =
e

2me

1
2
h̄ =

eh̄

4me
=

(1.60× 10−19 C)(1.05× 10−34 Js)
4(9.11× 10−31 kg)

= 4.61× 10−24 A m2.

6. Griffiths 6.10 Because the magnetization is uniform, ∇×M = 0, so there is no volume bound current, but
only a surface bound current Kb = M , wrapping around the rod like the current in a solenoid. For a � L, a
is much smaller than the radius of the toroid, so in equation (5.58), we can treat s as the radius of the toroid.
Then NI

2πs is the amount of current flowing around the toroid, per unit length, which is exactly what we mean
by surface current. Thus the B-field inside a complete, magnetized toroid is B = µ0

NI
2πs φ̂ = µ0Kb φ̂ = µ0M.

But part of the toroid is cut out, which we can treat as a bunch of square loops carrying the opposite current;
hence they will produce a magnetic field in a direction opposite to the one produced by the rest of the toroid.
In problem (5.8) we found the B-field at the center of a square loop: B = µ0I

√
2/πR. In this case R = a/2

(the perpendicular distance from the center of the loop to its side). We assume that w � a, so we can think of
the gap as a single square loop with all the current running around it. Thus I = Kbw = Mw. So the missing
piece of the toroid contributes −2√2µ0Mw/πa. So at the center of the gap, B = µ0M

(
1− 2

√
2w

πa

)
.

7. Griffiths 6.12

(a) There is a surface bound current Kb = M × n̂ = kR φ̂ and a volume current Jb = ∇× M = −k φ̂.
Since all the current is circumferential, we can think of the situation as the superposition of lots of coaxial
solenoids of different radii. So immediately we conclude B = 0 outside the cylinder. Now we can draw
a square amperian loop that has one side parallel to the z-axis inside the cylinder, and the opposite side
parallel to the z-axis outside. We know the B-field should be pointing in the z-direction, so we’ll get no
contribution to the line integral from the other two sides. Since B = 0 outside, the only section of the
loop that contributes is the piece inside the cylinder parallel to the z-axis.

∮
B · dl = BL = µ0Ienc =

µ0

[∫
Jbda+KbL

]
= µ0[−kL(R− s) + kRL] = µ0kLs. (L(R − s) is the area of the amperian loop inside

the cylinder.) So B = µ0ks ẑ inside.

s

R

L

Problem 7. Griffiths 6.12
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(b) Since M is the only object in this problem that picks out a direction in space, we know H must also point
in the z-direction. However, using the same amperian loop as in part (a),

∮
H · dl = HL = µ0Ifenc = 0

because there are no free currents. Thus H = 0, so B = µ0M. Outside,M = 0 so B = 0; insideM = ks ẑ,
so B = µ0ks ẑ.

8. Griffiths 6.13 We assume that the cavities as small enough so that the fields are essentially uniform inside of
them. We treat the cavities by considering the superposition of a piece of material without cavities and small,
cavity-shaped objects with opposite magnetization.

(a) The B-field of a uniformly magnetized sphere is 2
3µ0M, so the contribution to the B-field from the cavity

is the same as the contribution from a uniformly magnetized sphere with magnetization −M, namely
Bcav = − 2

3µ0M. Thus with the sphere removed B = B0 − 2
3µ0M. Inside the real cavity, H = 1

µ0
B

because there is no magnetization, so = 1
µ0
(B0 − 2

3µ0M) = H0 +M− 2
3M ⇒ H = H0 + 1

3M.

(b) For a long, thin, cylindrical cavity with uniform magnetization−M there is only surface currentKb = −M ,
which looks like a solenoid. So the B-field at the center is µ0Kb = −µ0M . Adding this to the contribution
from the cavity-less material, we find B = B0 − µ0M. Then H = 1

µ0
B = 1

µ0
(B0 − µ0M) = 1

µ0
B0 −M ⇒

H = H0.

(c) For the wafer shaped cavity, the bound currents run around the outside edge, so if the wafer has a large
radius and is very thin, those currents will be very small and far away from the center and will contribute
virtually no magnetic field. Thus B = B0. Then H = 1

µ0
B0 = H0 +M ⇒ H = H0 +M.
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